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Abstract. The method of continuous unitary transformations is applied to obtain the indirect exchange
coupling between local magnetic moments in an electron gas. The derivation of the exact analytical expres-
sion for the resulting Ruderman-Kittel-Kasuya-Yosida interaction is presented for general dimensionality.
In odd dimensions, the result can be shown explicitly to exhibit universal 2kF oscillatory behaviour on all
length scales.
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1 Introduction

Over four decades ago, Ruderman and Kittel [1], followed
by Kasuya [2] and by Yosida [3], investigated the indirect
exchange coupling between localized magnetic moments
immersed in a metallic host. They derived the resulting
oscillatory long-range magnetic interaction mediated by
the polarization of the conduction electrons, which then
became known as the Ruderman-Kittel-Kasuya-Yosida or
RKKY interaction. In their original work, these authors
restricted themselves to consider explicitly the spatial de-
pendence of the interaction in three dimensions, while the
two-dimensional case was solved much later by Korenblit
and Shender [4] and also by Béal-Monod [5]. The solution
in one dimension was obtained by Kittel [6], with sev-
eral subtleties of his derivation later clarified by Yafet [7].
All these results in special dimensions are based on sec-
ond order perturbation theory for the magnetic response
function. In the derivation of the effective magnetic inter-
action between the localized spins, they employ a pertur-
bative expression for the nonuniform static susceptibility
of the electron gas [6], i.e. the Lindhard function. In this
framework, an analytical result for the RKKY interaction
in generalized dimensionality has been obtained only very
recently by Aristov [8], utilizing a Landau-type represen-
tation of the electronic Green’s function.

In this Rapid Note we present the derivation of the
RKKY interaction in general dimension d based on the
method of continuous unitary transformations [9,10]. We
intend to show that this alternative approach allows to
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obtain the general analytical expression for the spatial de-
pendence of the coupling between magnetic moments in
a very elegant and transparent way. This implies to start
ab initio from the Hamiltonian of the electron gas cou-
pled to magnetic impurities via a Kondo term. Unlike the
usual approach, no prior results for this system need to
be invoked, including the electronic propagator and the
two-particle correlation function. The derivation is per-
formed completely on the Hamiltonian level. Additionally,
we show for odd dimensions that the spatially dependent
result for the RKKY susceptibility can be expressed in an
analytical form which makes the typical 2kF oscillations
explicit for all distances.

2 The flow equations

To describe the coupling of free electrons to local magnetic
moments, we consider the Kondo-like Hamiltonian

H =
∑
kσ

εk c
†
kσ ckσ +

J

2

∑
arσσ′

Sar c
†
rσ σ

a
σσ′ crσ′ . (1)

The c†, c are fermionic operators and the Sa denote Carte-
sian components of the localized spins. Accordingly, we
choose the dispersion

εk =
~2k2

2m∗
− εF. (2)

It is also assumed that the magnetic coupling acts on an
energy scale very close to the Fermi edge, J � εF.
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To proceed with the original Hamiltonian (1), we ap-
ply a properly chosen continuous unitary transformation,
U(`), which introduces a flow parameter ` ≥ 0. Due
to this transformation, which aims at the elimination of
those scattering terms which do not conserve the elec-
tronic energy, the Hamiltonian itself becomes `-dependent,
H(`) = U(`)H U†(`). Additionally to the original contri-
butions in (1), H(`) also contains newly generated terms
which describe the indirect exchange between the mag-
netic moments or more complicated interactions. One thus
has

H(`) =
∑
kσ

εk : c†kσ ckσ : +
1
2

∑
akk′

χkk′(`) Sak−k′S
a
k′−k

+
1
2

∑
akk′σσ′

Jkk′(`) Sak−k′ : c†kσ σ
a
σσ′ ck′σ′ :, (3)

where : . . . : denotes normal ordering with respect to the
Fermi sea, corresponding to zero temperature. All terms
generated by the transformation are written in normal
ordered form. Interaction terms others than those given
in (3) are disregarded after normal ordering, since they do
not contribute to the magnetic susceptibility in the order
we work, O(J2). The coupling functions in (3) obey the
initial conditions Jkk′(0) = J and χkk′(0) = 0. Both Jkk′

and χkk′ depend on two momenta, as is enforced by the
transformation properties. The flow of the Hamiltonian
under the continuous transformation is described by the
differential equation [9]

d
d`
H(`) = [η(`),H(`)], (4)

where η(`) is the antihermitean generator which has to
be chosen appropriately. In order to eliminate those terms
from the Hamiltonian which couple the magnetic impuri-
ties to the electron gas, we adopt the choice

η(`) =
1
2

∑
akk′σσ′

Jkk′(`)(εk − εk′)Sak−k′ : c†kσσ
a
σσ′ck′σ′ : .

(5)

This form of the generator ensures that the nondiagonal
(|εk−εk′| > 0) contributions in (3) are eventually removed.
The basic flow equation (4) then results in the following
differential equation for the nondiagonal coupling function

d
d`
Jkk′(`) = −Jkk′(`) (εk − εk′)2

+
∑
q

nq Jkq(`)Jqk′(`)
(
εk + εk′ − 2εq

)
. (6)

Here nk = θ(kF−k) and k = |k|. The flow of the magnetic
susceptibility is given by

d
d`
χkk′(`) = J2

kk′(`)(nk − nk′)(εk − εk′). (7)

Note that the occupations nk enter the flow equations
as a consequence of the normal ordering procedure. The

electronic energies εk do not depend on the transformation
flow, since the homogeneous magnetization of the local
spins is assumed to vanish.

To obtain the solutions of these differential equations,
we restrict ourselves to the contributions to the suscep-
tibility which are of second order in the initial magnetic
coupling, i.e. of order O(J2). To the order O(J) relevant
for the Jkk′ , from (6) one then finds an exponential decay
of the Kondo coupling,

Jkk′(`) = J exp
(
−` (εk − εk′)2

)
+O(J2), (8)

which highlights the continuous elimination of all non-
degenerate (k 6= k′) terms as ` � 1. As is apparent from
(7), only these non-degenerate scattering processes enter
into the effective magnetic interaction, in accordance with
the Pauli principle. Although equation (6) contains con-
tributions which are of higher order in J , these are not
sufficient to obtain the accurate higher order corrections
of Jkk′(`). The reason for this is that with the genera-
tor (5) new (normal ordered) terms are generated in the
transformed Hamiltonian, which do not contribute to the
O(J2) result for the susceptibility and are therefore ne-
glected, but become important in higher orders. With this
solution for Jkk′(`), the magnetic susceptibility is given by

χkk′(`) =
J2

2
nk − nk′

εk − εk′
(
1− exp

(
−2` (εk − εk′)2

))
. (9)

The physical result for χkk′ is now obtained from this
expression by taking the limit `→∞.

To compare the results of the continuous transforma-
tion via flow equations with the corresponding single-step
transformation of the Hamiltonian, note that commuting
the generator (5) with itself at different ` reproduces its
own operator structure after normal ordering,

[η(`), η(`′)] =
1
2

∑
akk′σσ′

gkk′(`, `′)Sak−k′ : c†kσσ
a
σσ′ck′σ′ : .

(10)

Here, as in (3), more complicated interaction terms are
neglected. For gkk′(`, `′) one has the result

gkk′(`, `′) =
∑
q

nq(εk − εq)(εq − εk′)

×
(
Jkq(`)Jqk′(`′)− Jkq(`′)Jqk′(`)

)
. (11)

Since [η(`), η(`′)] = O(J2), one finds that up to terms of
this order the unitary transformation U(`) = expS(`) is
given by S(`) =

∫ `
0

d`′ η(`′), where

S(`) =
1
2

∑
akk′σσ′

J − Jkk′(`)
εk − εk′

Sak−k′ : c†kσσ
a
σσ′ck′σ′ : .(12)

This finding indicates that with respect to the transformed
Hamiltonian in O(J2) the continuous transformation in
the `→∞ limit and the transformation U(∞) performed
in a single step are equivalent.
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3 The general solution

From the result (9) for the magnetic interaction in mo-
mentum space, the spatial dependence is obtained by

χr(`) =
∑
kk′

ei(k−k′)r χkk′(`). (13)

Performing first the two polar integrations, one arrives at
the useful representation

χr(`) =
a2d

(2π)d rd−2

∫ ∞
0

dk k
d
2

∫ ∞
0

dk′k′
d
2

×χkk′(`)J d
2−1(kr)J d

2−1(k′r), (14)

which encapsulates the general dimensional dependence.
Here ad is the volume of the d-dimensional unit cell. We
adopt the notation that J and N denote Bessel and
Neumann functions, respectively. This expression for the
spatially varying susceptibility involves integrations over
products of Bessel functions which can be evaluated ana-
lytically [11]. One obtains the result

χr(∞) =
πJ2

4εF

(
kFa

2

2πr

)d (kFr)2

d− 1
Φd(kFr), (15)

which is in agreement with [8]. The interesting spatial de-
pendence is contained in the function

Φd(x) = J d
2−1(x)N d

2−1(x) + J d
2
(x)N d

2
(x). (16)

This result is a continuous function both of the distance
r and the dimensionality d. It is valid for general d > 0.
In the asymptotic regime, kFr � 1, the expression (15)
reduces to

χr(∞) ' J2

4εF

(
kFa

2

2πr

)d
sin(2kFr − πd/2), (17)

where the characteristic 2kF-governed oscillations are ap-
parent on long distances. Therefore, one has χr ∼ r−d for
r → ∞, while χr ∼ r2−d for r → 0 and d > 2. From the
result in general dimension (15), one immediately recov-
ers the previously known special solutions for d = 1, 2, 3.
Utilizing a result for the free electron gas,(

kFa

2π

)d
=
Γ (d2 + 1)

2πd/2
, (18)

in d = 3 one finds the well-known expression

χr(∞) =
9πJ2

4εF
2kFr cos(2kFr) − sin(2kFr)

(2kFr)4
· (19)

For d = 2, one rederives

χr(∞) =
πJ2

4εF
×
(
J0(kFr)N0(kFr) + J1(kFr)N1(kFr)

)
. (20)

In one dimension, due to the vanishing denominator in
(15), the calculation involves derivatives of the Bessel and
Neumann functions with respect to their index [12]. The
correctly reproduced result then reads

χr(∞) =
πJ2

16εF
si(2kFr), (21)

with the sine integral si(x) = −
∫∞
x

dt t−1 sin t.
For odd integer spatial dimensionality, a general state-

ment about the oscillatory behaviour of the susceptibil-
ity (15) is possible. Defining the nth-degree polynomials
Qn(x) in terms of generalized hypergeometric functions,

Qn(x) := 2F0[n+ 1,−n; 1/x], (22)

which are monotonically increasing on the negative real
axis, the function Φd(x) in odd dimensions d can be ex-
pressed by

Φ2n+1(x) =
(−1)n+1

πx

× =
[
exp(2ix)

(
Q2
n(2ix) −Q2

−n(2ix)
)]
. (23)

Here n+ 1 is a natural number and = denotes the imagi-
nary part. This result for d = 2n+ 1 shows explicitly that
the oscillatory part of the magnetic interaction exhibits
the typical 2kF dependence.

More generally, consider the momentum dependent
susceptibility

χq(`) = a−d
∑

r

e−iqr χr(`), (24)

which can be represented as a Mellin transform,

χq(∞) =
πJ2

4εF

Γ (d2 + 1)
d− 1

(
2kF

q

) d
2−1

×
∫ ∞

0

dxx2− d2 J d
2−1

( qx
kF

)
Φd(x). (25)

Readily evaluated, the integration yields the result

χq(∞) = −dJ
2

4εF
ϕd
( q

2kF

)
, (26)

with the function ϕd(x) given by

ϕd(x) = θ(1− x) 2F1[1, 1− d

2
;

3
2

;x2]

+θ(x− 1)
1
dx2 2F1[1,

1
2

; 1 +
d

2
; 1/x2]. (27)

Note that in even integer dimensions ϕ2n(x) in the range
x < 1 is a (n− 1)th-degree polynomial in x2. More specif-
ically, for x < 1 it can be expressed as

ϕ2n(x) =
(−2)n−1(n− 1)!

(2n− 1)!!
P

( 1
2−n,

1
2 )

n−1 (2x2 − 1), (28)

where the P (α,β)
m are Jacobi polynomials.
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4 Final remarks

In this Rapid Note we have presented a derivation of the
RKKY interaction for general spatial dimension, utilizing
the method of flow equations based on continuous unitary
transformations. To emphasize the conceptual elegance of
this method, the calculations have been performed explic-
itly in order O(J2) and for the free electron gas. However,
the general expressions derived in Section 2 remain valid
in a straightforward manner also for a more complicated
electron dispersion, but then the resulting momentum
integrations are much more difficult to solve analytically.
To extend the derivation beyond the second order of the
coupling J , a number of additional new interaction terms
must be included in the transformed Hamiltonian and
the generator. This leads to higher-order corrections of
the flow equations for the couplings Jkk′ and χkk′ , as
well as to new flow equations for the additional couplings.
Although this extended set of flow equations again can be
solved exactly order by order of J , the final multiple mo-
mentum integrals become quite intractable. However, also

at this level the calculations remain much more transpar-
ent than standard many-body perturbation theory.
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